Semiparametric Regression Analysis of Longitudinal Skewed Data
Huazhen Lin,
Ling Zhou and
Xiaohua Zhou
Scandinavian Journal of Statistics, 2014, vol. 41, issue 4, 1031-1050
Abstract:
type="main" xml:id="sjos12080-abs-0001"> In this paper, we develop a semiparametric regression model for longitudinal skewed data. In the new model, we allow the transformation function and the baseline function to be unknown. The proposed model can provide a much broader class of models than the existing additive and multiplicative models. Our estimators for regression parameters, transformation function and baseline function are asymptotically normal. Particularly, the estimator for the transformation function converges to its true value at the rate n-super- − 1 ∕ 2, the convergence rate that one could expect for a parametric model. In simulation studies, we demonstrate that the proposed semiparametric method is robust with little loss of efficiency. Finally, we apply the new method to a study on longitudinal health care costs.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1111/sjos.12080 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:41:y:2014:i:4:p:1031-1050
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().