Non-parametric Estimation of Extreme Risk Measures from Conditional Heavy-tailed Distributions
Jonathan El Methni,
Laurent Gardes and
Stéphane Girard
Scandinavian Journal of Statistics, 2014, vol. 41, issue 4, 988-1012
Abstract:
type="main" xml:id="sjos12078-abs-0001">
In this paper, we introduce a new risk measure, the so-called conditional tail moment. It is defined as the moment of order a ≥ 0 of the loss distribution above the upper α-quantile where α ∈ (0,1). Estimating the conditional tail moment permits us to estimate all risk measures based on conditional moments such as conditional tail expectation, conditional value at risk or conditional tail variance. Here, we focus on the estimation of these risk measures in case of extreme losses (where α ↓0 is no longer fixed). It is moreover assumed that the loss distribution is heavy tailed and depends on a covariate. The estimation method thus combines non-parametric kernel methods with extreme-value statistics. The asymptotic distribution of the estimators is established, and their finite-sample behaviour is illustrated both on simulated data and on a real data set of daily rainfalls.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://hdl.handle.net/10.1111/sjos.12078 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:41:y:2014:i:4:p:988-1012
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().