Enriching Surveys with Supplementary Data and its Application to Studying Wage Regression
Denis Heng Yan Leung,
Ken Yamada and
Biao Zhang
Scandinavian Journal of Statistics, 2015, vol. 42, issue 1, 155-179
Abstract:
type="main" xml:id="sjos12100-abs-0001"> We consider the problem of supplementing survey data with additional information from a population. The framework we use is very general; examples are missing data problems, measurement error models and combining data from multiple surveys. We do not require the survey data to be a simple random sample of the population of interest. The key assumption we make is that there exists a set of common variables between the survey and the supplementary data. Thus, the supplementary data serve the dual role of providing adjustments to the survey data for model consistencies and also enriching the survey data for improved efficiency. We propose a semi-parametric approach using empirical likelihood to combine data from the two sources. The method possesses favourable large and moderate sample properties. We use the method to investigate wage regression using data from the National Longitudinal Survey of Youth Study.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1111/sjos.12100 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:42:y:2015:i:1:p:155-179
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().