A Central Limit Theorem in Non-parametric Regression with Truncated, Censored and Dependent Data
Han-Ying Liang,
Jacobo Uña-álvarez and
María Iglesias-pérez
Scandinavian Journal of Statistics, 2015, vol. 42, issue 1, 256-269
Abstract:
type="main" xml:id="sjos12105-abs-0001"> On the basis of the idea of the Nadaraya–Watson (NW) kernel smoother and the technique of the local linear (LL) smoother, we construct the NW and LL estimators of conditional mean functions and their derivatives for a left-truncated and right-censored model. The target function includes the regression function, the conditional moment and the conditional distribution function as special cases. It is assumed that the lifetime observations with covariates form a stationary α-mixing sequence. Asymptotic normality of the estimators is established. Finite sample behaviour of the estimators is investigated via simulations. A real data illustration is included too.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1111/sjos.12105 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:42:y:2015:i:1:p:256-269
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().