The Identifiability of Dependent Competing Risks Models Induced by Bivariate Frailty Models
Antai Wang,
Krishnendu Chandra,
Ruihua Xu and
Junfeng Sun
Scandinavian Journal of Statistics, 2015, vol. 42, issue 2, 427-437
Abstract:
type="main" xml:id="sjos12114-abs-0001"> In this paper, we propose to use a special class of bivariate frailty models to study dependent censored data. The proposed models are closely linked to Archimedean copula models. We give sufficient conditions for the identifiability of this type of competing risks models. The proposed conditions are derived based on a property shared by Archimedean copula models and satisfied by several well-known bivariate frailty models. Compared with the models studied by Heckman and Honoré and Abbring and van den Berg, our models are more restrictive but can be identified with a discrete (even finite) covariate. Under our identifiability conditions, expectation–maximization (EM) algorithm provides us with consistent estimates of the unknown parameters. Simulation studies have shown that our estimation procedure works quite well. We fit a dependent censored leukaemia data set using the Clayton copula model and end our paper with some discussions. © 2014 Board of the Foundation of the Scandinavian Journal of Statistics
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1111/sjos.12114 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:42:y:2015:i:2:p:427-437
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().