Regression Analysis of Length-biased and Right-censored Failure Time Data with Missing Covariates
Na Hu,
Xuerong Chen and
Jianguo Sun
Scandinavian Journal of Statistics, 2015, vol. 42, issue 2, 438-452
Abstract:
type="main" xml:id="sjos12115-abs-0001"> Length-biased and right-censored failure time data arise from many fields, and their analysis has recently attracted a great deal of attention. Two examples of the areas that often produce such data are epidemiological studies and cancer screening trials. In this paper, we discuss regression analysis of such data in the presence of missing covariates, for which no established inference procedure seems to exist. For the problem, we consider the data arising from the proportional hazards model and propose two inverse probability weighted estimation procedures. The asymptotic properties of the resulting estimators are established, and the extensive simulation study conducted for the evaluation of the proposed methods suggests that they work well for practical situations.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1111/sjos.12115 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:42:y:2015:i:2:p:438-452
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().