Optimal and Robust Designs for Estimating the Concentration Curve and the AUC
Mohamad Belouni and
Karim Benhenni
Scandinavian Journal of Statistics, 2015, vol. 42, issue 2, 453-470
Abstract:
type="main" xml:id="sjos12116-abs-0001"> The problem of interest is to estimate the concentration curve and the area under the curve (AUC) by estimating the parameters of a linear regression model with an autocorrelated error process. We introduce a simple linear unbiased estimator of the concentration curve and the AUC. We show that this estimator constructed from a sampling design generated by an appropriate density is asymptotically optimal in the sense that it has exactly the same asymptotic performance as the best linear unbiased estimator. Moreover, we prove that the optimal design is robust with respect to a minimax criterion. When repeated observations are available, this estimator is consistent and has an asymptotic normal distribution. Finally, a simulated annealing algorithm is applied to a pharmacokinetic model with correlated errors.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1111/sjos.12116 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:42:y:2015:i:2:p:453-470
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().