Statistical Estimation for a Class of Self-Regulating Processes
Antoine Echelard,
Jacques Lévy Véhel and
Anne Philippe
Scandinavian Journal of Statistics, 2015, vol. 42, issue 2, 485-503
Abstract:
type="main" xml:id="sjos12118-abs-0001"> Self-regulating processes are stochastic processes whose local regularity, as measured by the pointwise Hölder exponent, is a function of amplitude. They seem to provide relevant models for various signals arising for example in geophysics or biomedicine. We propose in this work an estimator of the self-regulating function (that is, the function relating amplitude and Hölder regularity) of the self-regulating midpoint displacement process and study some of its properties. We prove that it is almost surely convergent and obtain a central limit theorem. Numerical simulations show that the estimator behaves well in practice.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1111/sjos.12118 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:42:y:2015:i:2:p:485-503
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().