An Objective Bayesian Criterion to Determine Model Prior Probabilities
Cristiano Villa and
Stephen Walker
Scandinavian Journal of Statistics, 2015, vol. 42, issue 4, 947-966
Abstract:
type="main" xml:id="sjos12145-abs-0001"> We discuss the problem of selecting among alternative parametric models within the Bayesian framework. For model selection problems, which involve non-nested models, the common objective choice of a prior on the model space is the uniform distribution. The same applies to situations where the models are nested. It is our contention that assigning equal prior probability to each model is over simplistic. Consequently, we introduce a novel approach to objectively determine model prior probabilities, conditionally, on the choice of priors for the parameters of the models. The idea is based on the notion of the worth of having each model within the selection process. At the heart of the procedure is the measure of this worth using the Kullback–Leibler divergence between densities from different models.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://hdl.handle.net/10.1111/sjos.12145 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:42:y:2015:i:4:p:947-966
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().