Sparse Approximations of Fractional Matérn Fields
Lassi Roininen,
Sari Lasanen,
Mikko Orispää and
Simo Särkkä
Scandinavian Journal of Statistics, 2018, vol. 45, issue 1, 194-216
Abstract:
We consider fast lattice approximation methods for a solution of a certain stochastic non†local pseudodifferential operator equation. This equation defines a Matérn class random field. We approximate the pseudodifferential operator with truncated Taylor expansion, spectral domain error functional minimization and rounding approximations. This allows us to construct Gaussian Markov random field approximations. We construct lattice approximations with finite†difference methods. We show that the solutions can be constructed with overdetermined systems of stochastic matrix equations with sparse matrices, and we solve the system of equations with a sparse Cholesky decomposition. We consider convergence of the truncated Taylor approximation by studying band†limited Matérn fields. We consider the convergence of the discrete approximations to the continuous limits. Finally, we study numerically the accuracy of different approximation methods with an interpolation problem.
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12297
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:45:y:2018:i:1:p:194-216
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().