Central Limit Theorems of Local Polynomial Threshold Estimator for Diffusion Processes with Jumps
Yuping Song and
Hanchao Wang
Scandinavian Journal of Statistics, 2018, vol. 45, issue 3, 644-681
Abstract:
Central limit theorems play an important role in the study of statistical inference for stochastic processes. However, when the non‐parametric local polynomial threshold estimator, especially local linear case, is employed to estimate the diffusion coefficients of diffusion processes, the adaptive and predictable structure of the estimator conditionally on the σ‐field generated by diffusion processes is destroyed, so the classical central limit theorem for martingale difference sequences cannot work. In high‐frequency data, we proved the central limit theorems of local polynomial threshold estimators for the volatility function in diffusion processes with jumps by Jacod's stable convergence theorem. We believe that our proof procedure for local polynomial threshold estimators provides a new method in this field, especially in the local linear case.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/sjos.12318
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:45:y:2018:i:3:p:644-681
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().