EconPapers    
Economics at your fingertips  
 

Wavelet‐based estimators for mixture regression

Michel H. Montoril, Aluísio Pinheiro and Brani Vidakovic

Scandinavian Journal of Statistics, 2019, vol. 46, issue 1, 215-234

Abstract: We consider a process that is observed as a mixture of two random distributions, where the mixing probability is an unknown function of time. The setup is built upon a wavelet‐based mixture regression. Two linear wavelet estimators are proposed. Furthermore, we consider three regularizing procedures for each of the two wavelet methods. We also discuss regularity conditions under which the consistency of the wavelet methods is attained and derive rates of convergence for the proposed estimators. A Monte Carlo simulation study is conducted to illustrate the performance of the estimators. Various scenarios for the mixing probability function are used in the simulations, in addition to a range of sample sizes and resolution levels. We apply the proposed methods to a data set consisting of array Comparative Genomic Hybridization from glioblastoma cancer studies.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/sjos.12344

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:46:y:2019:i:1:p:215-234

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898

Access Statistics for this article

Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist

More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:scjsta:v:46:y:2019:i:1:p:215-234