Wild adaptive trimming for robust estimation and cluster analysis
Andrea Cerioli,
Alessio Farcomeni and
Marco Riani
Scandinavian Journal of Statistics, 2019, vol. 46, issue 1, 235-256
Abstract:
Trimming principles play an important role in robust statistics. However, their use for clustering typically requires some preliminary information about the contamination rate and the number of groups. We suggest a fresh approach to trimming that does not rely on this knowledge and that proves to be particularly suited for solving problems in robust cluster analysis. Our approach replaces the original K‐population (robust) estimation problem with K distinct one‐population steps, which take advantage of the good breakdown properties of trimmed estimators when the trimming level exceeds the usual bound of 0.5. In this setting, we prove that exact affine equivariance is lost on one hand but, on the other hand, an arbitrarily high breakdown point can be achieved by “anchoring” the robust estimator. We also support the use of adaptive trimming schemes, in order to infer the contamination rate from the data. A further bonus of our methodology is its ability to provide a reliable choice of the usually unknown number of groups.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://doi.org/10.1111/sjos.12349
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:46:y:2019:i:1:p:235-256
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().