Testing the equality of two high‐dimensional spatial sign covariance matrices
Guanghui Cheng,
Baisen Liu,
Liuhua Peng,
Baoxue Zhang and
Shurong Zheng
Scandinavian Journal of Statistics, 2019, vol. 46, issue 1, 257-271
Abstract:
This paper is concerned with testing the equality of two high‐dimensional spatial sign covariance matrices with applications to testing the proportionality of two high‐dimensional covariance matrices. It is interesting that these two testing problems are completely equivalent for the class of elliptically symmetric distributions. This paper develops a new test for testing the equality of two high‐dimensional spatial sign covariance matrices based on the Frobenius norm of the difference between two spatial sign covariance matrices. The asymptotic normality of the proposed testing statistic is derived under the null and alternative hypotheses when the dimension and sample sizes both tend to infinity. Moreover, the asymptotic power function is also presented. Simulation studies show that the proposed test performs very well in a wide range of settings and can be allowed for the case of large dimensions and small sample sizes.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/sjos.12350
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:46:y:2019:i:1:p:257-271
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().