A unified empirical likelihood approach for testing MCAR and subsequent estimation
Shixiao Zhang,
Peisong Han and
Changbao Wu
Scandinavian Journal of Statistics, 2019, vol. 46, issue 1, 272-288
Abstract:
For an estimation with missing data, a crucial step is to determine if the data are missing completely at random (MCAR), in which case a complete‐case analysis would suffice. Most existing tests for MCAR do not provide a method for a subsequent estimation once the MCAR is rejected. In the setting of estimating means, we propose a unified approach for testing MCAR and the subsequent estimation. Upon rejecting MCAR, the same set of weights used for testing can then be used for estimation. The resulting estimators are consistent if the missingness of each response variable depends only on a set of fully observed auxiliary variables and the true outcome regression model is among the user‐specified functions for deriving the weights. The proposed method is based on the calibration idea from survey sampling literature and the empirical likelihood theory.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/sjos.12351
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:46:y:2019:i:1:p:272-288
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().