The local fractional bootstrap
Mikkel Bennedsen,
Ulrich Hounyo,
Asger Lunde and
Mikko S. Pakkanen
Scandinavian Journal of Statistics, 2019, vol. 46, issue 1, 329-359
Abstract:
We introduce a bootstrap procedure for high‐frequency statistics of Brownian semistationary processes. More specifically, we focus on a hypothesis test on the roughness of sample paths of Brownian semistationary processes, which uses an estimator based on a ratio of realized power variations. Our new resampling method, the local fractional bootstrap, relies on simulating an auxiliary fractional Brownian motion that mimics the fine properties of high‐frequency differences of the Brownian semistationary process under the null hypothesis. We prove the first‐order validity of the bootstrap method, and in simulations, we observe that the bootstrap‐based hypothesis test provides considerable finite‐sample improvements over an existing test that is based on a central limit theorem. This is important when studying the roughness properties of time series data. We illustrate this by applying the bootstrap method to two empirical data sets: We assess the roughness of a time series of high‐frequency asset prices and we test the validity of Kolmogorov's scaling law in atmospheric turbulence data.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/sjos.12355
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:46:y:2019:i:1:p:329-359
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().