EconPapers    
Economics at your fingertips  
 

The local fractional bootstrap

Mikkel Bennedsen, Ulrich Hounyo, Asger Lunde and Mikko S. Pakkanen

Scandinavian Journal of Statistics, 2019, vol. 46, issue 1, 329-359

Abstract: We introduce a bootstrap procedure for high‐frequency statistics of Brownian semistationary processes. More specifically, we focus on a hypothesis test on the roughness of sample paths of Brownian semistationary processes, which uses an estimator based on a ratio of realized power variations. Our new resampling method, the local fractional bootstrap, relies on simulating an auxiliary fractional Brownian motion that mimics the fine properties of high‐frequency differences of the Brownian semistationary process under the null hypothesis. We prove the first‐order validity of the bootstrap method, and in simulations, we observe that the bootstrap‐based hypothesis test provides considerable finite‐sample improvements over an existing test that is based on a central limit theorem. This is important when studying the roughness properties of time series data. We illustrate this by applying the bootstrap method to two empirical data sets: We assess the roughness of a time series of high‐frequency asset prices and we test the validity of Kolmogorov's scaling law in atmospheric turbulence data.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/sjos.12355

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:46:y:2019:i:1:p:329-359

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898

Access Statistics for this article

Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist

More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:scjsta:v:46:y:2019:i:1:p:329-359