Automated selection of post‐strata using a model‐assisted regression tree estimator
Kelly S. McConville and
Daniell Toth
Scandinavian Journal of Statistics, 2019, vol. 46, issue 2, 389-413
Abstract:
Despite having desirable properties, model‐assisted estimators are rarely used in anything but their simplest form to produce official statistics. This is due to the fact that the more complicated models are often ill suited to the available auxiliary data. Under a model‐assisted framework, we propose a regression tree estimator for a finite‐population total. Regression tree models are adept at handling the type of auxiliary data usually available in the sampling frame and provide a model that is easy to explain and justify. The estimator can be viewed as a post‐stratification estimator where the post‐strata are automatically selected by the recursive partitioning algorithm of the regression tree. We establish consistency of the regression tree estimator and a variance estimator, along with asymptotic normality of the regression tree estimator. We compare the performance of our estimator to other survey estimators using the United States Bureau of Labor Statistics Occupational Employment Statistics Survey data.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/sjos.12356
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:46:y:2019:i:2:p:389-413
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().