The large sample coverage probability of confidence intervals in general regression models after a preliminary hypothesis test
Paul Kabaila and
Rupert E. H. Kuveke
Scandinavian Journal of Statistics, 2019, vol. 46, issue 2, 432-445
Abstract:
We derive a computationally convenient formula for the large sample coverage probability of a confidence interval for a scalar parameter of interest following a preliminary hypothesis test that a specified vector parameter takes a given value in a general regression model. Previously, this large sample coverage probability could only be estimated by simulation. Our formula only requires the evaluation, by numerical integration, of either a double or a triple integral, irrespective of the dimension of this specified vector parameter. We illustrate the application of this formula to a confidence interval for the odds ratio of myocardial infarction when the exposure is recent oral contraceptive use, following a preliminary test where two specified interactions in a logistic regression model are zero. For this real‐life data, we compare this large sample coverage probability with the actual coverage probability of this confidence interval, obtained by simulation.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12358
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:46:y:2019:i:2:p:432-445
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().