A smoothed Q‐learning algorithm for estimating optimal dynamic treatment regimes
Yanqin Fan,
Ming He,
Liangjun Su () and
Xiao‐Hua Zhou
Scandinavian Journal of Statistics, 2019, vol. 46, issue 2, 446-469
Abstract:
In this paper, we propose a smoothed Q‐learning algorithm for estimating optimal dynamic treatment regimes. In contrast to the Q‐learning algorithm in which nonregular inference is involved, we show that, under assumptions adopted in this paper, the proposed smoothed Q‐learning estimator is asymptotically normally distributed even when the Q‐learning estimator is not and its asymptotic variance can be consistently estimated. As a result, inference based on the smoothed Q‐learning estimator is standard. We derive the optimal smoothing parameter and propose a data‐driven method for estimating it. The finite sample properties of the smoothed Q‐learning estimator are studied and compared with several existing estimators including the Q‐learning estimator via an extensive simulation study. We illustrate the new method by analyzing data from the Clinical Antipsychotic Trials of Intervention Effectiveness–Alzheimer's Disease (CATIE‐AD) study.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12359
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:46:y:2019:i:2:p:446-469
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().