Bayesian inference for stable Lévy–driven stochastic differential equations with high‐frequency data
Ajay Jasra,
Kengo Kamatani and
Hiroki Masuda
Scandinavian Journal of Statistics, 2019, vol. 46, issue 2, 545-574
Abstract:
In this paper, we consider parametric Bayesian inference for stochastic differential equations driven by a pure‐jump stable Lévy process, which is observed at high frequency. In most cases of practical interest, the likelihood function is not available; hence, we use a quasi‐likelihood and place an associated prior on the unknown parameters. It is shown under regularity conditions that there is a Bernstein–von Mises theorem associated to the posterior. We then develop a Markov chain Monte Carlo algorithm for Bayesian inference, and assisted with theoretical results, we show how to scale Metropolis–Hastings proposals when the frequency of the data grows, in order to prevent the acceptance ratio from going to zero in the large data limit. Our algorithm is presented on numerical examples that help verify our theoretical findings.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/sjos.12362
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:46:y:2019:i:2:p:545-574
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().