Estimation of treatment effects for heterogeneous matched‐pairs data with probit models
Jun Wang,
Wei Gao and
Man‐Lai Tang
Scandinavian Journal of Statistics, 2019, vol. 46, issue 2, 575-594
Abstract:
Estimating the effect of medical treatments on subject responses is one of the crucial problems in medical research. Matched‐pairs designs are commonly implemented in the field of medical research to eliminate confounding and improve efficiency. In this article, new estimators of treatment effects for heterogeneous matched‐pairs data are proposed. Asymptotic properties of the proposed estimators are derived. Simulation studies show that the proposed estimators have some advantages over the famous Heckman's estimator, the conditional maximum likelihood estimator, and the inverse probability weighted estimator. We apply the proposed methodology to a data set from a study of low‐birth‐weight infants.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12363
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:46:y:2019:i:2:p:575-594
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().