A stochastic process approach to multilayer neutron detectors
Dragi Anevski,
Richard Hall‐Wilton,
Kalliopi Kanaki and
Vladimir Pastukhov
Scandinavian Journal of Statistics, 2019, vol. 46, issue 2, 621-635
Abstract:
The sparsity of the isotope Helium‐3, ongoing since 2009, has initiated a new generation of neutron detectors. One particularly promising development line for detectors is the multilayer gaseous detector. In this paper, a stochastic process approach is used to determine the neutron energy from the additional data afforded by the multilayer nature of these novel detectors. The data from a multilayer detector consist of counts of the number of absorbed neutrons along the sequence of the detector's layers, in which the neutron absorption probability is unknown. We study the maximum likelihood estimator for the intensity and absorption probability and show its consistency and asymptotic normality, as the number of incoming neutrons goes to infinity. We combine these results with known results on the relation between the absorption probability and the wavelength to derive an estimator of the wavelength and to show its consistency and asymptotic normality.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12374
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:46:y:2019:i:2:p:621-635
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().