An oracle property of the Nadaraya–Watson kernel estimator for high‐dimensional nonparametric regression
Daniel Conn and
Gang Li
Scandinavian Journal of Statistics, 2019, vol. 46, issue 3, 735-764
Abstract:
The Nadaraya–Watson estimator is among the most studied nonparametric regression methods. A classical result is that its convergence rate depends on the number of covariates and deteriorates quickly as the dimension grows. This underscores the “curse of dimensionality” and has limited its use in high‐dimensional settings. In this paper, however, we show that the Nadaraya–Watson estimator has an oracle property such that when the true regression function is single‐ or multi‐index, it discovers the low‐rank dependence structure between the response and the covariates, mitigating the curse of dimensionality. Specifically, we prove that, using K‐fold cross‐validation and a positive‐semidefinite bandwidth matrix, the Nadaraya–Watson estimator has a convergence rate that depends on the number of indices rather than on the number of covariates. This result follows by allowing the bandwidths to diverge to infinity rather than restricting them all to converge to zero at certain rates, as in previous theoretical studies.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12370
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:46:y:2019:i:3:p:735-764
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().