EconPapers    
Economics at your fingertips  
 

GMM nonparametric correction methods for logistic regression with error‐contaminated covariates and partially observed instrumental variables

Xiao Song and Ching‐Yun Wang

Scandinavian Journal of Statistics, 2019, vol. 46, issue 3, 898-919

Abstract: We consider logistic regression with covariate measurement error. Most existing approaches require certain replicates of the error‐contaminated covariates, which may not be available in the data. We propose generalized method of moments (GMM) nonparametric correction approaches that use instrumental variables observed in a calibration subsample. The instrumental variable is related to the underlying true covariates through a general nonparametric model, and the probability of being in the calibration subsample may depend on the observed variables. We first take a simple approach adopting the inverse selection probability weighting technique using the calibration subsample. We then improve the approach based on the GMM using the whole sample. The asymptotic properties are derived, and the finite sample performance is evaluated through simulation studies and an application to a real data set.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/sjos.12364

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:46:y:2019:i:3:p:898-919

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898

Access Statistics for this article

Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist

More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:scjsta:v:46:y:2019:i:3:p:898-919