EconPapers    
Economics at your fingertips  
 

Adaptively transformed mixed‐model prediction of general finite‐population parameters

Shonosuke Sugasawa and Tatsuya Kubokawa

Scandinavian Journal of Statistics, 2019, vol. 46, issue 4, 1025-1046

Abstract: For estimating area‐specific parameters (quantities) in a finite population, a mixed‐model prediction approach is attractive. However, this approach strongly depends on the normality assumption of the response values, although we often encounter a non‐normal case in practice. In such a case, transforming observations to make them suitable for normality assumption is a useful tool, but the problem of selecting a suitable transformation still remains open. To overcome the difficulty, we here propose a new empirical best predicting method by using a parametric family of transformations to estimate a suitable transformation based on the data. We suggest a simple estimating method for transformation parameters based on the profile likelihood function, which achieves consistency under some conditions on transformation functions. For measuring the variability of point prediction, we construct an empirical Bayes confidence interval of the population parameter of interest. Through simulation studies, we investigate the numerical performance of the proposed methods. Finally, we apply the proposed method to synthetic income data in Spanish provinces in which the resulting estimates indicate that the commonly used log transformation would not be appropriate.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/sjos.12380

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:46:y:2019:i:4:p:1025-1046

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898

Access Statistics for this article

Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist

More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:scjsta:v:46:y:2019:i:4:p:1025-1046