Modeling spatial overdispersion via the generalized Waring point process
Mimoza Zografi and
Evdokia Xekalaki
Scandinavian Journal of Statistics, 2019, vol. 46, issue 4, 1098-1116
Abstract:
Modeling spatial overdispersion requires point process models with finite‐dimensional distributions that are overdisperse relative to the Poisson distribution. Fitting such models usually heavily relies on the properties of stationarity, ergodicity, and orderliness. In addition, although processes based on negative binomial finite‐dimensional distributions have been widely considered, they typically fail to simultaneously satisfy the three required properties for fitting. Indeed, it has been conjectured by Diggle and Milne that no negative binomial model can satisfy all three properties. In light of this, we change perspective and construct a new process based on a different overdisperse count model, namely, the generalized Waring (GW) distribution. While comparably tractable and flexible to negative binomial processes, the GW process is shown to possess all required properties and additionally span the negative binomial and Poisson processes as limiting cases. In this sense, the GW process provides an approximate resolution to the conundrum highlighted by Diggle and Milne.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12385
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:46:y:2019:i:4:p:1098-1116
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().