On cusp location estimation for perturbed dynamical systems
Yury A. Kutoyants
Scandinavian Journal of Statistics, 2019, vol. 46, issue 4, 1206-1226
Abstract:
We consider the problem of parameter estimation in the case of observation of the trajectory of the diffusion process. We suppose that the drift coefficient has a singularity of cusp type and that the unknown parameter corresponds to the position of the point of the cusp. The asymptotic properties of the maximum likelihood estimator and Bayesian estimators are described in the asymptotic of small noise, that is, as the diffusion coefficient tends to zero. The consistency, limit distributions, and the convergence of moments of these estimators are established.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12391
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:46:y:2019:i:4:p:1206-1226
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().