EconPapers    
Economics at your fingertips  
 

Dimension reduction for the conditional mean and variance functions in time series

Jin‐Hong Park and S. Yaser Samadi

Scandinavian Journal of Statistics, 2020, vol. 47, issue 1, 134-155

Abstract: This paper deals with the nonparametric estimation of the mean and variance functions of univariate time series data. We propose a nonparametric dimension reduction technique for both mean and variance functions of time series. This method does not require any model specification and instead we seek directions in both the mean and variance functions such that the conditional distribution of the current observation given the vector of past observations is the same as that of the current observation given a few linear combinations of the past observations without loss of inferential information. The directions of the mean and variance functions are estimated by maximizing the Kullback–Leibler distance function. The consistency of the proposed estimators is established. A computational procedure is introduced to detect lags of the conditional mean and variance functions in practice. Numerical examples and simulation studies are performed to illustrate and evaluate the performance of the proposed estimators.

Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1111/sjos.12405

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:47:y:2020:i:1:p:134-155

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898

Access Statistics for this article

Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist

More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:scjsta:v:47:y:2020:i:1:p:134-155