Local Whittle likelihood approach for generalized divergence
Yujie Xue and
Masanobu Taniguchi
Scandinavian Journal of Statistics, 2020, vol. 47, issue 1, 182-195
Abstract:
There are many approaches in the estimation of spectral density. With regard to parametric approaches, different divergences are proposed in fitting a certain parametric family of spectral densities. Moreover, nonparametric approaches are also quite common considering the situation when we cannot specify the model of process. In this paper, we develop a local Whittle likelihood approach based on a general score function, with some special cases of which, the approach applies to more applications. This paper highlights the effective asymptotics of our general local Whittle estimator, and presents a comparison with other estimators. Additionally, for a special case, we construct the one‐step ahead predictor based on the form of the score function. Subsequently, we show that it has a smaller prediction error than the classical exponentially weighted linear predictor. The provided numerical studies show some interesting features of our local Whittle estimator.
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12418
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:47:y:2020:i:1:p:182-195
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().