EconPapers    
Economics at your fingertips  
 

On aggregation of strongly dependent time series

Jan Beran, Haiyan Liu and Sucharita Ghosh

Scandinavian Journal of Statistics, 2020, vol. 47, issue 3, 690-710

Abstract: We consider cross‐sectional aggregation of time series with long‐range dependence. This question arises for instance from the statistical analysis of networks where aggregation is defined via routing matrices. Asymptotically, aggregation turns out to increase dependence substantially, transforming a hyperbolic decay of autocorrelations to a slowly varying rate. This effect has direct consequences for statistical inference. For instance, unusually slow rates of convergence for nonparametric trend estimators and nonstandard formulas for optimal bandwidths are obtained. The situation changes, when time‐dependent aggregation is applied. Suitably chosen time‐dependent aggregation schemes can preserve a hyperbolic rate or even eliminate autocorrelations completely.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/sjos.12421

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:47:y:2020:i:3:p:690-710

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898

Access Statistics for this article

Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist

More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:scjsta:v:47:y:2020:i:3:p:690-710