EconPapers    
Economics at your fingertips  
 

Conditional covariance penalties for mixed models

Benjamin Säfken and Thomas Kneib

Scandinavian Journal of Statistics, 2020, vol. 47, issue 3, 990-1010

Abstract: The prediction error for mixed models can have a conditional or a marginal perspective depending on the research focus. We introduce a novel conditional version of the optimism theorem for mixed models linking the conditional prediction error to covariance penalties for mixed models. Different possibilities for estimating these conditional covariance penalties are introduced. These are bootstrap methods, cross‐validation, and a direct approach called Steinian. The behavior of the different estimation techniques is assessed in a simulation study for the binomial‐, the t‐, and the gamma distribution and for different kinds of prediction error. Furthermore, the impact of the estimation techniques on the prediction error is discussed based on an application to undernutrition in Zambia.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1111/sjos.12437

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:47:y:2020:i:3:p:990-1010

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898

Access Statistics for this article

Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist

More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:scjsta:v:47:y:2020:i:3:p:990-1010