Variable screening for survival data in the presence of heterogeneous censoring
Jinfeng Xu,
Wai Keung Li and
Zhiliang Ying
Scandinavian Journal of Statistics, 2020, vol. 47, issue 4, 1171-1191
Abstract:
Variable screening for censored survival data is most challenging when both survival and censoring times are correlated with an ultrahigh‐dimensional vector of covariates. Existing approaches to handling censoring often make use of inverse probability weighting by assuming independent censoring with both survival time and covariates. This is a convenient but rather restrictive assumption which may be unmet in real applications, especially when the censoring mechanism is complex and the number of covariates is large. To accommodate heterogeneous (covariate‐dependent) censoring that is often present in high‐dimensional survival data, we propose a Gehan‐type rank screening method to select features that are relevant to the survival time. The method is invariant to monotone transformations of the response and of the predictors, and works robustly for a general class of survival models. We establish the sure screening property of the proposed methodology. Simulation studies and a lymphoma data analysis demonstrate its favorable performance and practical utility.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/sjos.12458
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:47:y:2020:i:4:p:1171-1191
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().