A dynamic model for double‐bounded time series with chaotic‐driven conditional averages
Guilherme Pumi,
Taiane Schaedler Prass and
Rafael Rigão Souza
Scandinavian Journal of Statistics, 2021, vol. 48, issue 1, 68-86
Abstract:
In this work, we introduce a class of dynamic models for time series taking values on the unit interval. The proposed model follows a generalized linear model approach where the random component, conditioned on the past information, follows a beta distribution, while the conditional mean specification may include covariates and also an extra additive term given by the iteration of a map that can present chaotic behavior. The resulting model is very flexible and its systematic component can accommodate short‐ and long‐range dependence, periodic behavior, laminar phases, etc. We derive easily verifiable conditions for the stationarity of the proposed model, as well as conditions for the law of large numbers and a Birkhoff‐type theorem to hold. A Monte Carlo simulation study is performed to assess the finite sample behavior of the partial maximum likelihood approach for parameter estimation in the proposed model. Finally, an application to the proportion of stored hydroelectrical energy in Southern Brazil is presented.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/sjos.12439
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:48:y:2021:i:1:p:68-86
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().