Adaptive estimating function inference for nonstationary determinantal point processes
Frédéric Lavancier,
Arnaud Poinas and
Rasmus Waagepetersen
Scandinavian Journal of Statistics, 2021, vol. 48, issue 1, 87-107
Abstract:
Estimating function inference is indispensable for many common point process models where the joint intensities are tractable while the likelihood function is not. In this article, we establish asymptotic normality of estimating function estimators in a very general setting of nonstationary point processes. We then adapt this result to the case of nonstationary determinantal point processes, which are an important class of models for repulsive point patterns. In practice, often first‐ and second‐order estimating functions are used. For the latter, it is a common practice to omit contributions for pairs of points separated by a distance larger than some truncation distance, which is usually specified in an ad hoc manner. We suggest instead a data‐driven approach where the truncation distance is adapted automatically to the point process being fitted and where the approach integrates seamlessly with our asymptotic framework. The good performance of the adaptive approach is illustrated via simulation studies for non‐stationary determinantal point processes and by an application to a real dataset.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12440
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:48:y:2021:i:1:p:87-107
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().