Multivariate analysis of variance and change points estimation for high‐dimensional longitudinal data
Ping‐Shou Zhong,
Jun Li and
Piotr Kokoszka
Scandinavian Journal of Statistics, 2021, vol. 48, issue 2, 375-405
Abstract:
This article considers the problem of testing temporal homogeneity of p‐dimensional population mean vectors from repeated measurements on n subjects over T times. To cope with the challenges brought about by high‐dimensional longitudinal data, we propose methodology that takes into account not only the “large p, large T, and small n” situation but also the complex temporospatial dependence. We consider both the multivariate analysis of variance problem and the change point problem. The asymptotic distributions of the proposed test statistics are established under mild conditions. In the change point setting, when the null hypothesis of temporal homogeneity is rejected, we further propose a binary segmentation method and show that it is consistent with a rate that explicitly depends on p,T, and n. Simulation studies and an application to fMRI data are provided to demonstrate the performance and applicability of the proposed methods.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/sjos.12460
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:48:y:2021:i:2:p:375-405
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().