Nonparametric volatility change detection
Maria Mohr and
Natalie Neumeyer
Scandinavian Journal of Statistics, 2021, vol. 48, issue 2, 529-548
Abstract:
We consider a nonparametric heteroscedastic time series regression model and suggest testing procedures to detect changes in the conditional variance function. The tests are based on a sequential marked empirical process and thus combine classical CUSUM tests from change point analysis with marked empirical process approaches known from goodness‐of‐fit testing. The tests are consistent against general alternatives of a change in the conditional variance function, a feature that classical CUSUM tests are lacking. We derive a simple limiting distribution and in the case of univariate covariates even obtain asymptotically distribution‐free tests. We demonstrate the good performance of the tests in a simulation study and consider exchange rates as a real data application.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/sjos.12497
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:48:y:2021:i:2:p:529-548
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().