Asymptotic theory for statistics based on cumulant vectors with applications
Sreenivasa Rao Jammalamadaka,
Emanuele Taufer and
György H. Terdik
Scandinavian Journal of Statistics, 2021, vol. 48, issue 2, 708-728
Abstract:
For any given multivariate distribution, explicit formulae for the asymptotic covariances of cumulant vectors of the third and the fourth order are provided here. General expressions for cumulants of elliptically symmetric multivariate distributions are also provided. Utilizing these formulae one can extend several results currently available in the literature, as well as obtain practically useful expressions in terms of population cumulants, and computational formulae in terms of commutator matrices. Results are provided for both symmetric and asymmetric distributions, when the required moments exist. New measures of skewness and kurtosis based on distinct elements are discussed, and other applications to independent component analysis and testing are considered.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/sjos.12521
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:48:y:2021:i:2:p:708-728
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().