Identifying groups of determinants in Bayesian model averaging using Dirichlet process clustering
Bettina Grün and
Paul Hofmarcher
Scandinavian Journal of Statistics, 2021, vol. 48, issue 3, 1018-1045
Abstract:
Model uncertainty is a pervasive problem in regression applications. Bayesian model averaging (BMA) takes model uncertainty into account and identifies robust determinants. However, it requires the specification of suitable model priors. Mixture model priors are appealing because they explicitly account for different groups of covariates as robust determinants. Specific Dirichlet process clustering (DPC) model priors are proposed; their correspondence to the binomial model prior derived and methods to perform the BMA analysis including a DPC postprocessing procedure to identify groups of determinants are outlined. The application of these model priors is demonstrated in a simulation exercise and in an empirical analysis of cross‐country economic growth data. The BMA analysis is performed using the Markov chain Monte Carlo model composition sampler to obtain samples from the posterior of the model specifications. Results are compared with those obtained under a beta‐binomial and a collinearity‐adjusted dilution model prior.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12541
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:48:y:2021:i:3:p:1018-1045
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().