Ordinal patterns in long‐range dependent time series
Annika Betken,
Jannis Buchsteiner,
Herold Dehling,
Ines Münker,
Alexander Schnurr and
Jeannette H.C. Woerner
Scandinavian Journal of Statistics, 2021, vol. 48, issue 3, 969-1000
Abstract:
We analyze the ordinal structure of long‐range dependent time series. To this end, we use so called ordinal patterns which describe the relative position of consecutive data points. We provide two estimators for the probabilities of ordinal patterns and prove limit theorems in different settings, namely stationarity and (less restrictive) stationary increments. In the second setting, we encounter a Rosenblatt distribution in the limit. We prove more general limit theorems for functions with Hermite rank 1 and 2. We derive the limit distribution for an estimation of the Hurst parameter H if it is higher than 3/4. Thus, our theorems complement results for lower values of H which can be found in the literature. Finally, we provide some simulations that illustrate our theoretical results.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12478
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:48:y:2021:i:3:p:969-1000
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().