Semiparametric estimation and model selection for conditional mixture copula models
Guannan Liu,
Wei Long,
Bingduo Yang and
Zongwu Cai
Scandinavian Journal of Statistics, 2022, vol. 49, issue 1, 287-330
Abstract:
Conditional copula models allow the dependence structure among variables to vary with covariates, and thus can describe the evolution of the dependence structure with those factors. This paper proposes a conditional mixture copula which is a weighted average of several individual conditional copulas. We allow both the weights and copula parameters to vary with a covariate so that the conditional mixture copula offers additional flexibility and accuracy in describing the dependence structure. We propose a two‐step semi‐parametric estimation method and develop asymptotic properties of the estimators. Moreover, we introduce model selection procedures to select the component copulas of the conditional mixture copula model. Simulation results suggest that the proposed procedures have a good performance in estimating and selecting conditional mixture copulas with different model specifications. The proposed model is then applied to investigate how the dependence structures among international equity markets evolve with the volatility in the exchange rate markets.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/sjos.12514
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:49:y:2022:i:1:p:287-330
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().