EconPapers    
Economics at your fingertips  
 

Efficient estimation via envelope chain in magnetic resonance imaging‐based studies

Lan Liu, Wei Li, Zhihua Su, Dennis Cook, Luca Vizioli and Essa Yacoub

Scandinavian Journal of Statistics, 2022, vol. 49, issue 2, 481-501

Abstract: Magnetic resonance imaging (MRI) is a technique that scans the anatomical structure of the brain, whereas functional magnetic resonance imaging (fMRI) uses the same basic principles of atomic physics as MRI scans but image metabolic function. A major goal of MRI and fMRI study is to precisely delineate various types of tissues, anatomical structure, pathologies, and detect the brain regions that react to outer stimuli (e.g., viewing an image). As a key feature of these MRI‐based neuroimaging data, voxels (cubic pixels of the brain volume) are highly correlated. However, the associations between voxels are often overlooked in the statistical analysis. We adapt a recently proposed dimension reduction method called the envelope method to analyze neuoimaging data taking into account correlation among voxels. We refer to the modified procedure the envelope chain procedure. Because the envelope chain procedure has not been employed before, we demonstrate in simulations the empirical performance of estimator, and examine its sensitivity when our assumptions are violated. We use the estimator to analyze the MRI data from ADHD‐200 study. Data analyses demonstrate that leveraging the correlations among voxels can significantly increase the efficiency of the regression analysis, thus achieving higher detection power with small sample sizes.

Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/sjos.12522

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:49:y:2022:i:2:p:481-501

Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898

Access Statistics for this article

Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist

More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-19
Handle: RePEc:bla:scjsta:v:49:y:2022:i:2:p:481-501