Efficiency of naive estimators for accelerated failure time models under length‐biased sampling
Pourab Roy,
Jason P. Fine and
Michael R. Kosorok
Scandinavian Journal of Statistics, 2022, vol. 49, issue 2, 525-541
Abstract:
In prevalent cohort studies where subjects are recruited at a cross‐section, the time to an event may be subject to length‐biased sampling, with the observed data being either the forward recurrence time, or the backward recurrence time, or their sum. In the regression setting, assuming a semiparametric accelerated failure time model for the underlying event time, where the intercept parameter is absorbed into the nuisance parameter, it has been shown that the model remains invariant under these observed data setups and can be fitted using standard methodology for accelerated failure time model estimation, ignoring the length bias. However, the efficiency of these estimators is unclear, owing to the fact that the observed covariate distribution, which is also length biased, may contain information about the regression parameter in the accelerated life model. We demonstrate that if the true covariate distribution is completely unspecified, then the naive estimator based on the conditional likelihood given the covariates is fully efficient for the slope.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12526
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:49:y:2022:i:2:p:525-541
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().