The negative binomial process: A tractable model with composite likelihood‐based inference
Wagner Barreto‐Souza and
Hernando Ombao
Scandinavian Journal of Statistics, 2022, vol. 49, issue 2, 568-592
Abstract:
We propose a log‐linear Poisson regression model driven by a stationary latent gamma autoregression. This process has negative binomial (NB) marginals to analyze overdispersed count time series data. Estimation and statistical inference are performed using a composite (CL) likelihood function. We establish theoretical properties of the proposed count model, in particular, the strong consistency and asymptotic normality of the maximum CL estimator. A procedure for calculating the standard error of the parameter estimator and confidence intervals is derived based on the parametric bootstrap. Monte Carlo experiments were conducted to study and compare the finite‐sample properties of the proposed estimators. The simulations demonstrate that, compared with the approach that combines generalized linear models with the ordinary least squares method, the proposed composite likelihood approach provides satisfactory results for estimating the parameters related to the correlation structure of the process, even under model misspecification. An empirical illustration of the NB process is presented for the monthly number of viral hepatitis cases in Goiânia (capital and largest city of the Brazilian state of Goiás) from January 2001 to December 2018.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12528
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:49:y:2022:i:2:p:568-592
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().