Multidimensional parameter estimation of heavy‐tailed moving averages
Mathias Mørck Ljungdahl and
Mark Podolskij
Scandinavian Journal of Statistics, 2022, vol. 49, issue 2, 593-624
Abstract:
In this article we present a parametric estimation method for certain multiparameter heavy‐tailed Lévy‐driven moving averages. The theory relies on recent multivariate central limit theorems obtained via Malliavin calculus on Poisson spaces. Our minimal contrast approach is related to previous papers, which propose to use the marginal empirical characteristic function to estimate the one‐dimensional parameter of the kernel function and the stability index of the driving Lévy motion. We extend their work to allow for a multiparametric framework that in particular includes the important examples of the linear fractional stable motion, the stable Ornstein–Uhlenbeck process, certain CARMA(2, 1) models, and Ornstein–Uhlenbeck processes with a periodic component among other models. We present both the consistency and the associated central limit theorem of the minimal contrast estimator. Furthermore, we demonstrate numerical analysis to uncover the finite sample performance of our method.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12527
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:49:y:2022:i:2:p:593-624
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().