Efficient spatial designs using Hausdorff distances and Bayesian optimization
Jacopo Paglia,
Jo Eidsvik and
Juha Karvanen
Scandinavian Journal of Statistics, 2022, vol. 49, issue 3, 1060-1084
Abstract:
An iterative Bayesian optimization technique is presented to find spatial designs of data that carry much information. We use the decision theoretic notion of value of information as the design criterion. Gaussian process surrogate models enable fast calculations of expected improvement for a large number of designs, while the full‐scale value of information evaluations are only done for the most promising designs. The Hausdorff distance is used to model the similarity between designs in the surrogate Gaussian process covariance representation, and this allows the suggested algorithm to learn across different designs. We study properties of the Bayesian optimization design algorithm in a synthetic example and real‐world examples from forest conservation and petroleum drilling operations. In the synthetic example we consider a model where the exact solution is available and we run the algorithm under different versions of this example and compare it with existing approaches such as sequential selection and an exchange algorithm.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12554
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:49:y:2022:i:3:p:1060-1084
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().