Bayesian nonparametric estimation in the current status continuous mark model
Geurt Jongbloed,
Frank H. van der Meulen and
Lixue Pang
Scandinavian Journal of Statistics, 2022, vol. 49, issue 3, 1329-1352
Abstract:
We consider the current status continuous mark model where, if an event takes place before an inspection time T a “continuous mark” variable is observed as well. A Bayesian nonparametric method is introduced for estimating the distribution function of the joint distribution of the event time (X) and mark variable (Y). We consider two histogram‐type priors on the density of (X,Y). Our main result shows that under appropriate conditions, the posterior distribution function contracts pointwisely at rate n/logn−ρ3(ρ+2) if the true density is ρ‐Hölder continuous. In addition to our theoretical results we provide efficient computational methods for drawing from the posterior relying on a noncentered parameterization and Crank–Nicolson updates. The performance of the proposed methods is illustrated in several numerical experiments.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12562
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:49:y:2022:i:3:p:1329-1352
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().