Uniform convergence rates for nonparametric estimators smoothed by the beta kernel
Masayuki Hirukawa,
Irina Murtazashvili and
Artem Prokhorov
Scandinavian Journal of Statistics, 2022, vol. 49, issue 3, 1353-1382
Abstract:
This paper provides a set of uniform consistency results with rates for nonparametric density and regression estimators smoothed by the beta kernel having support on the unit interval. Weak and strong uniform convergence is explored on the basis of expanding compact sets and general sequences of smoothing parameters. The results in this paper are useful for asymptotic analysis of two‐step semiparametric estimation using a first‐step kernel estimate as a plug‐in. We provide simulations and a real data example illustrating attractive properties of the estimators.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/sjos.12573
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:49:y:2022:i:3:p:1353-1382
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().