Convergence of likelihood ratios and estimators for selection in nonneutral Wright–Fisher diffusions
Jaromir Sant,
Paul A. Jenkins,
Jere Koskela and
Dario Spanò
Scandinavian Journal of Statistics, 2022, vol. 49, issue 4, 1728-1760
Abstract:
A number of discrete time, finite population size models in genetics describing the dynamics of allele frequencies are known to converge (subject to suitable scaling) to a diffusion process termed the Wright–Fisher diffusion. This diffusion evolves on a bounded interval, such that many standard results in diffusion theory, assuming evolution on the real line, no longer apply. In this article we derive conditions to establish ϑ‐uniform ergodicity for diffusions on bounded intervals, and use them to prove that the Wright–Fisher diffusion is uniformly in the selection and mutation parameters ergodic, and that the measures induced by the solution to the stochastic differential equation are uniformly locally asymptotically normal. We subsequently use these results to show that the maximum likelihood and Bayesian estimators for the selection parameter are uniformly over compact sets consistent, asymptotically normal, display moment convergence, and are asymptotically efficient for a suitable class of loss functions.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12572
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:49:y:2022:i:4:p:1728-1760
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().