Multiply robust matching estimators of average and quantile treatment effects
Shu Yang and
Yunshu Zhang
Scandinavian Journal of Statistics, 2023, vol. 50, issue 1, 235-265
Abstract:
Propensity score matching has been a long‐standing tradition for handling confounding in causal inference, however, requiring stringent model assumptions. In this article, we propose novel double score matching (DSM) utilizing both the propensity score and prognostic score. To gain the protection of possible model misspecification, we posit multiple candidate models for each score. We show that the debiasing DSM estimator achieves the multiple robustness property in that it is consistent if any one of the score models is correctly specified. We characterize the asymptotic distribution for the DSM estimator requiring only one correct model specification based on the martingale representations of the matching estimators and theory for local normal experiments. We also provide a two‐stage replication method for variance estimation and extend DSM for quantile estimation. Simulation demonstrates DSM outperforms single‐score matching and prevailing multiply robust weighting estimators in the presence of extreme propensity scores.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/sjos.12585
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:50:y:2023:i:1:p:235-265
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().