Bayesian inverse problems with heterogeneous variance
Natalia Bochkina and
Jenovah Rodrigues
Scandinavian Journal of Statistics, 2023, vol. 50, issue 3, 1116-1151
Abstract:
We consider inverse problems in Hilbert spaces under correlated Gaussian noise, and use a Bayesian approach to find their regularized solution. We focus on mildly ill‐posed inverse problems with fractional noise, using a novel wavelet‐based vaguelette–vaguelette approach. It allows us to apply sequence space methods without assuming that all operators are simultaneously diagonalizable. The results are proved for more general bases and covariance operators. Our primary aim is to study posterior contraction rate in such inverse problems over Sobolev classes and compare it to the derived minimax rate. Secondly, we study effect of plugging in a consistent estimator of variances in sequence space on the posterior contraction rate. This result is applied to the problem with error in forward operator. Thirdly, we show that empirical Bayes posterior distribution with a plugged‐in maximum marginal likelihood estimator of the prior scale contracts at the optimal rate, adaptively, in the minimax sense.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/sjos.12622
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:scjsta:v:50:y:2023:i:3:p:1116-1151
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=0303-6898
Access Statistics for this article
Scandinavian Journal of Statistics is currently edited by ÿrnulf Borgan and Bo Lindqvist
More articles in Scandinavian Journal of Statistics from Danish Society for Theoretical Statistics, Finnish Statistical Society, Norwegian Statistical Association, Swedish Statistical Association
Bibliographic data for series maintained by Wiley Content Delivery ().